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Datasets

« Single-cell omic technologies, such as single cell
RNA-sequencing (scRNA-seq), captures high-
dimensional molecular profiles, such as gene
expression at the individual cell level.

« Dimensionality reduction is a powerful strategy for
understanding single cell data. A common workflow
includes clustering and annotation of cell types and
states. Existing packages for this task use
dimensionality reduction approaches such as
principal components analysis (PCA) and non-
negative matrix factorization (NMF).

- We apply a different dimensionality reduction
algorithm, orthogonal non-negative matrix tri-
factorization (O-NMTF), that enables us to define
the low-dimensional embedding of cells and
genomic features simultaneously.

« We use this lower-dimensional embeddings for
clustering of single cell datasets and identifying
active gene programs.

Orthogonal Non-Negative Matrix Tri-Factorization
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Result 1: O-NMTF simultaneously recovers row and column clusters better than O-NMF

Generating Simulated Data
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Projection and Clustering
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Relate Cell and Feature Clusters

Feature Interpretation

Gold Standard O-NMTF Clusters
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Result 3: O-NMTF identifies platform specific cell clusters in a 2D and 3D retinal organoid system
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Cell and feature embeddings are related Gene Cluster

via a sharing matrix, S. This matrix
allows for mapping cell types to active
gene programs.
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Functional annotation is performed
using GO enrichment analysis.

1.Simulated Matrices:

* Pre-defined cell and feature clusters.
* 500 cells, 1000 features.

2.Human Peripheral Blood Mononuclear Cells (PBMCI])

 Labeled cell types.
« 2638 cells, 6566 genes

3. 2D and 3D retinal organoid system during differentiation

« Uncharacterized cell types.
* 94,065 cells, 22904 genes.

Clustering Methods

* Orthogonal non-negative matrix tri-factorization (O-NMTF): Finds
orthogonal cell and feature factors. Provides a bi-clustering of the
"omic” matrix. Cell and feature clusters are related via a relation

matrix, S, that allows for many-to-many relationships.

* Orthogonal non-negative matrix factorization (O-NMF): Finds
feature clusters and orthogonal cell clusters. Provides a bi-
clustering of the “omic” matrix. Cell and features are related one-
to-onel?3l.

Result 2: O-NMTF outperforms O-NMF at recovering accurate cell types and meaningful gene clusters for PBMC data

Cluster Accuracy
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Marker Gene Expression

Cell Cluster Assignment

Retinal Organoids

Sox2 (progenitor cells, RPC)
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Gene editing technology may provide
mechanisms to treat blindness. To improve gene
targeting efficiency, we are studying retinal organoid

tissue cultivated in 2D and 3D culture platforms.

novel

2D and 3D Platforms

CRX (photoreceptors, rod and cones)
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Summary

« We developed orthogonal non-negative

matrix factorization (O-NMTF), a novel

approach for clustering and annotating single cell omic data.

« O-NMTF embeds the cell and feature space into two lower dimensional spaces.
Optimization over these hyperparameters allows O-NMTF to bi-cluster data more
accurately than standard O-NMF on simulated data.

« We evaluated the performance of O-NMTF on a single cell RNA-seq PBMC dataset.
O-NMTF recovered known cell labels more accurately than O-NMF.

 O-NMTF bi-clusters the cell and features of a single cell omic experiment. The
clusters are related by a relationship matrix. We demonstrate that these features
clusters portray biologically relevant information using GO term enrichment and cell
marker enrichment. In both the PBMC, and retinal organoids, cluster specific
features are used to annotate cell clusters.
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